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Abstract

 This paper is the first part of the revised version of my paper presented elsewhere (Chino, 2017). In this paper 
we propose a recent version of a set of complex difference equation models which describes changes in asym-
metric relationships among objects over time. Typical examples of these objects may be citation frequencies in 
scientific publications, amounts of trade among nations, connections among neurons, and so on. Supposing that 
such an asymmetric relational data matrix or a weighted digraph is observed in an instant of time, we first apply 
the Chino-Shiraiwa theorem to the matrix and embed objects in a (complex) Hilbert space. Then we shall apply 
our recent version of a set of general complex difference equation models to the initial configuration of objects 
embedded in the Hilbert space. As a result, we have various possible theoretical scenarios of the trajectories of 
objects in this space. We show some of the possible scenarios of the linear difference equation models in the 
special cases when the number of objects are two and three. In a companion paper to be published soon, we 
show various possible scenarios of the nonlinear difference equation models.

Keywords: complex difference equation, Hilbert space, Chino-Shiraiwa theorem, dynamic weighted digraph, 
chaos, trade imbalance, neural network

1. Introduction

 The formation of group structures and their changes over 
time within complex systems are ubiquitous in nature, and 
have a self-organizing property in most cases. Typical ex-
amples of these networks may be citation frequencies in 
scientific publications (i.e., Barabási & Albert, 1999; Chino, 
1978), amounts of trade among nations (i.e., Chino, 1978), 
and connections among neurons (i.e., Aizenberg et al., 
1971, 2000; Hirose, 1992; Suksmono & Hirose, 2005).
 One method to analyze such structures is to use a graph 
theoretic approach. Watts and Strogatz (1998) proposed the 
small world model, which is characterized by the property 
that two nodes (vertices) can be connected with a path 
(edges) of a few links only. Barabási and Albert (1999) 
found that many large networks have a common property in 
which the distribution function of vertex connectivities 
obeys a scale-free power low.
 Although graph theory is promising, it has a fundamental 
shortfall in that each path is in most cases assumed to be bi-

nary. It might be desirable to consider some models which 
describe changes in strengths of interaction between group 
members, i.e., changes in weights of directed graph (di-
graph), since in actual networks strengths of interaction are 
frequently continuous. One method to do such a job is to 
utilize dynamical system theories.
 For example, McCann et al. (1998) proposed an interest-
ing nonlinear differential equation model as a food-web 
model, in which they considered food-webs composed of 
three or four species, one being the top predator, another 
being a resource species, and the others being one or two 
consumer species. They examined the effects of interaction 
strengths on changes in densities of species over time. Re-
sults indicated that chaotic behaviors occur when the inter-
action strengths as bifurcation parameters of the system 
vary as time proceeds.
 Chesson and Warner (1981) proposed a lottery model 
which is described by a set of nonlinear difference equa-
tions. This model explains a certain coexistence phenome-
non of species. However, these models merely deal with 



24─　 ─

Naohito CHINO

changes in numbers or density of species. Moreover, most 
of the network models discussed above assume that the 
state space of the system is real, except for the complex 
neural network models.
 In this paper, we shall discuss various possible dynamical 
scenarios of a family of difference equation models. In 
these models, the state space is assumed to be finitedimen-
sional Hilbert space, given an asymmetric relational data 
matrix observed at a particular instant in time. Assumption 
of the Hilbert space is an algebraic consequence of the ap-
plication of Chino and Shiraiwa theorem (Chino & Shirai-
wa, 1993) to the asymmetric matrix.
 The earlier primitive model (Chino, 2000, 2002, 2006, 
2014, 2015) is written as the following set of equations:

 , = , + ,( ) ( ) , , ,= 1, 2, , ,  (1)

 
( ) , , = ,( ) ,( ) , ,( ) ,( ) ,… , ,( ) ,( ) ,  (2)

and

 ,( ) = ,( , ), ,( , ), … , ,( , ) .  (3)

 ,( , ) = ( , ) ,( , ) ,( , ) sin ,( , ) ,( , ) , 

l =1, 2, …, p,  m =1, 2, …, q. 
 (4)

 Here, ,   denotes the coordinate vector of member j at 
time n in a p-dimensional Hilbert space or an indefinite 
metric space. Moreover, m denotes the degree of the vector 
function,        , which is assumed to have the 
maximum value q. This model is very general and might 
enable us to describe various possible changes in asymmet-
ric relationships among members over time.
 However, recently we have found that Eq. (4) is too re-
strictive to model various complex phenomena. Moreover, 
we have recently realized that there exists an essential de-
fect in Eq. (4). That is, with this equation, the above differ-
ence equation is not holomorphic. For these reasons, we 
have recently dropped Eq. (4) from our model.
 As a result, the current version of our model is composed 
of a revised version of Eq. (1), Eq. (2), and Eq. (3). It 
should be noticed that            in Eq. (3) are 
complex constants in this case. Thus, we shall drop the sub-
script, n, in Eq. (3). Then, the revised version of Eq. (1) is 
written as,

 , = , + ( ) ( ) , ,+ , + , = 1, 2, , ,  (5)

where     is a control (e.g., Elaydi, 1999; Ott et al., 
1990), and 
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 is a complex constant vector. We may absorb  
  into     in Eq. (5). In this case Eq. (5) can be further 
revised as

 
, = , + ( ) ( ) , ,
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This means that we consider the complex constant, 
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, as a 
control factor.

2. Introduction to an elementary theory 
of dynamic weighted digraph

 To facilitate the understanding of the current set of differ-
ence equation models defined in the previous section and 
the motivation of this study, we shall show two sets of data. 
One set of data is the weighted digraph among four coun-
tries, Japan, Amerika, China, and Russia in 2015 (Asahi 
Newspaper, 2015). The corresponding asymmetric relation-
al data matrix is shown in Table 1.

Table 1.    Asymmetric relational data matrix among four coun-
tries, Japan, Amerika, China, and Russia in 2015, which 
was reproduced from the figure appeared in elsewhere 
(Asahi Newspaper, 2015).

J. Japan A. America C. China R. Russia

J. Japan 43,480 1,382 1,200 55

A. America 736 189,592 1,161 71

C. China 1,764 4,832 119,684 348

R. Russia 173 146 333 13,755

 Application of HFM (Chino & Shiraiwa, 1993) to the log 
transformed trade data revealed a 4-dimensional Hilbert 
space structure, since the eigenvalues of the Hermitian ma-
trix computed from the above asymmetric matrix were 
29.9714, 6.1145, 4.4377, and 3.5309. Here, we shall ap-
proximate this structure by a one-dimensional Hilbert space 
structure (i.e., the complex plane) associated with the larg-
est eigenvalue. Figure 1 shows the configuration of the four 
nations corresponding to the largest eigenvalue on the com-
plex plane.
 Then, in what manner does the configuration of these na-
tions change theoretically as time proceeds, through the in-
teractions among nations? Our complex difference equation 
models predict various scenarios of changes in the configu-
ration in terms of the trajectories of our models for these 
nations. Moreover, how can we change the configuration of 
nations, or paraphrase it to say, how can we control the 
trade imbalances revealed by the configuration of nations?
 One possible theoretical scenario is shown in Figure 2. 

( ) , ,

,( , ), ,( , ), … , ,( , )

,  
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,  
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Fig. 1.   Configuration of the four nations associated with the 
largest eigenvalue of the Hermitian matrix corresponding 
to the asymmetric trade data matrix.

Dynamical Scenarios of Changes

The unit length of the imaginary axis (i.e., the vertical axis) 
is enlarged compared with that of Figure 1. In this figure, 
the points labelled A1, C1, J1, and R1 denote the initial 
points of America, China, Japan, and Russia, respectively, 
in the complex plane. After the 800 iterations of a linear 
difference equation model, these four points converge al-
most to the point labelled JACR800. According to HFM, this 
means that the trade imbalance among four nations dis-
solves as time proceeds.

Fig. 2.   Trajectories of the four nations, Japan, Amerika, China, 
and Russia after 800 iterations of Model IV of the com-
plex linear difference equation model, =  
where  is the weight matrix of order 4 which is similar 
to  in Eq. (7), and its weights are = 0.01(1 ), 
                        = = = = = 0.02(1 ). In this case, 
eigenvalues of   are 1.0, 0.9950, 0.9901, and 0.9754.

= = = = = 0.01(1 ), =

 The other set of data is the estimated pass diagram 
among three voxels, V1 (primary visual cortex), V5 (middle 
temporal area), and SPC (superior parietal cortex), which 
was presented by Takane (2015). We modified the original 
pass diagram in such a way that it includes only the weight-
ed digraph among three voxels. Table 2 shows the corre-
sponding asymmetric connection matrix among three vox-
els.

Table 2.   An asymmetric connection matrix among three voxels 
corresponding to the digraph which is a modified ver-
sion of that analyzed by Takane (2015).

V1 V5 SPC

V1 0.329 0.601 0.335

V5 0.347 −0.044 0.404

SPC 0.146 0.307 0.052

 HFM applied to this set of data tells us that the above 
asymmetric connections have an indefinite metric structure, 
since the eigenvalues of the Hermitian matrix computed 
from the above asymmetric matrix are 0.8811, −0.0972, and 
−0.4469. Here, we shall approximate this structure by a 
one-dimensional Hilbert space structure associated with the 
largest eigenvalue. Figure 3 shows the configuration of the 
three voxels corresponding to the largest eigenvalue.

Fig. 3.   Configuration of the three voxel, V1, V5, and SPC asso-
ciated with the largest eigenvalue of the Hermitian matrix 
corresponding to the asymmetric connection matrix, ele-
ments of which are the pass coefficients by Takane 
(2015).

 Here, let us suppose that we have observed the above 
configuration of the three voxels at an instant of time. Then, 
in what manner does the configuration of these voxels 
change theoretically as time proceeds through the interac-
tions among voxels?
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 Our complex difference equation models predict various 
scenarios of changes in the configuration in terms of the 
trajectories of our models for these voxels. In this case, we 
used a quadratic difference equation model described by 
Eq. (15) defined in the next section. One reason why we 
choose such a nonlinear difference equation model for ana-
lyzing the set of data is that various chaotic behaviors have 
been found elsewhere in the neural network literature (i.e., 
Aihara et al., 1998; Babloyantz & Destexhe, 1986; Dafillis 
et al., 2013; Korn & Fauke, 2003; Mees et al., 1992; Pereda 
et al., 1998). Another reason is that linear models are unable 
to describe chaotic behaviors.
 Figures 4 to 5 show some of the simulation results. Coef-
ficients   ’s in this simulation are set equal to:      

    ,              ,       ,  
            ,         ,      , 
   ,      ,      ,      , where 
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0 0

s are 

coefficients of a quadratic system described by Eq. (15).

Fig. 4.   Changes in angles between voxels over time in the special 
case when α’s are special values.

 Figure 4 draws the node-to-node responses of the three 
voxels during the 12,000 iterations by a nonlinear system 
described by Eq. (15). It is apparent that the node-to-node 
responses behave as if they were the output from a dumped 
oscillators after about 2000 iterations.
 Figure 5 draws the trajectories of the three voxels, V1, 
V5, and SPC on the complex plane after 12,000 iterations. 
At an initial stage, trajectories of these voxels are all unsta-
ble and run about in a wide region, but they gradually begin 
to diverge, rotating on different cylinder-like spheres.

Fig. 5.   Trajectories of the three voxels, V1, V5, and SPC on the 
complex plane in the special case when α’s are special 
values.

3. Dynamical scenarios of changes in asymmetric 
relationships in complex difference models

 The difference equation models which we discuss in this 
section are some special cases of the general nonlinear dif-
ference equation model composed of Eqs. (5), (2), and (3), 
which is called “Model IV” in Chino (2016):
 First, we assume the special case when m=1, p=1, 
    , and    . If we further assume N=2, this case 
becomes a dyadic linear difference equation model, i.e.,
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, = +, = + ,  (7)

and if we assume N=3, it becomes a triadic linear differ-
ence equation model, i.e.,
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and so on.
 If we use the vector notation, Eqs. (7) and (8) can be 
written, respectively, as
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1 + 1 + ,  (9)

and
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= ,  where 

 (10)

Eqs. (9) and (10) are linear difference equations, and can be 
solved, for example, by using the famous Putzer algorithm 

( ) = ( )= 0.01 ( ) = ( ) = 0.01( 0.5 0.5i) ( ) = ( ) ( ) = ( ) = 0.01(1.5375 0.9564i) ( ) =−0.01
( ) = ( ) ( )= ( ) ( ) = ( ) ( ) = ( ) ( ) = ( )
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, =00 0
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difference models 

0 =00
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(Putzer, 1966). Dynamical scenarios of the solution curves 
can be examined by considering the eigenvalues of matri-
ces, 

0 0  

0 0  

, 

0 0  

0 0  

, and so on. It is evident that these matrices have 
at least one eigenvalue of size 1.
 In the dyadic case, dynamical scenarios of the solution 
curve have three patterns depending on the absolute value 
of the eigenvalue,       , as follows:

  
 1 + + > 1 

0 0  

0 0  

.

0 0  

0 0  

,                             , ,                       

0 0  

0 0  

  

0 0  

0 0  

 

0 0  

0 0  

1 + + = 1 

0 0  

0 0  

1 + + < 1

0 0  

0 0  

 (11)

 If we add a control term defined in Eq. (5), this becomes 
a dyadic difference equation model with a control term. If 
we assume, for example, that            , Eq. 
(7) is written as

 ,  = + + 0.01 ,, = + + 0.02,  

0 0  

0 0  

 (12)

where = 1
0 0  

0 0  

. This type of system is easily solved algebra-
ically. We shall compare its trajectory with those of the sys-
tems described by Eq. (7) later.
 Finally, we consider difference equation models with 
quadratic terms. If we assume the special case when N=2, 
m=2, p=1,      , and     in Eq. (5), then we have

 

0 0  

, = + ( ) + ( ) ,
, = + ( ) + ( ) . 

0 0  

 (13)

 This type of system has a very desirable property in that 
we can utilize the heritage of the theory of the complex dy-
namical system developed in mathematics directly in clas-
sifying its trajectories. In fact, defining a new variable, 
       , and transforming it linearly, we have a 
new system

 

0 0  

, = , + ( ),

0 0  

0 0  

where ( ) = ( ) ( ) ,

0 0  

 (14)

and 

0 0  

( ) = 1 + ( ) + ( ) 

0 0  

 (K. Shiraiwa, personal commu-
nication, April 25, 2014). Depending on the value of   , 
we have the Mandelbrot set. It is interesting to note that 
   which determines the value of    is one of the eigen-
values of the coefficient matrix of the linear system defined 
by Eq. (6), which we discussed earlier.
 If we assume the special case when N=3, m=2, p=1, 
    , and    in Eq. (5), then we have

  

, = + ( ) + ( )
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 We will see in a companion paper to appear soon that 
even a quadratic system which is a special case of our gen-
eral model described by Eq. (5) exhibits excitingly richer 
dynamical properties in its solution curve than linear sys-
tems.

4. Classification of the dynamical scenarios 
of the linear systems

4.1 Dyadic cases
 In this subsection, we discuss the dynamical scenarios of 
the linear systems described by Eq. (7). As pointed out ear-
lier, dynamical scenarios of the solution curves of these 
systems have three patterns depending on the absolute value 
of one of the eigenvalues,       , the other eigenval-
ue being 1.

 Simulation 1, Case 1 is the case when both eigenvalues 
are 1 (i.e., a double root). In this case, two members diverge 
to infinity on the parallel lines preserving their distance in 
the complex plane (Figure 6).

Fig. 6.   Trajectories of two members j (=A) and k (=B) on the 
complex plane in the special case when        , = 0.01(1 + ).

 It is interesting to notice that the angle between the two 
members converges asymptotically to zero as time pro-

1 + +

0 0  

0 0  

, = (0.01 ,   0.02)

0 0  

0 0  

, =00 0  

0 0  

0 =00   

0 0  

0 0  

=

0 0  

0 0  

( )

0 0  

0 0  

( )
0 0  

0 0  

( )
0 0  

0 0  

, =00 0  

0 0  

0 =00   
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1 + +

= 0.01(1 + )
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ceeds. This means that the skewness of the similarity of the 
two members monotonically decreases preserving their dis-
tance as time proceeds. Such a relation might be reminis-
cent of that of a husband and wife who have lived together 
for a long time.

 Simulation 1, Case 2 is the case when the absolute value 
of one eigenvalue is less than 1. In this case, two members 
converge to a fixed point in the complex plane (Figure 7). 
This point coincides with the asymptotic point of the trajec-
tories which is solved algebraically by the Patzer algorithm.

Fig. 7.   Trajectories of two members j (=A) and k (=B) on the 
complex plane in the special case when        , = 0.02(1 + ).

 Simulation 1, Case 3 is the case when the absolute value 
of one eigenvalue is greater than 1. In this case, two mem-
bers diverge to infinity in the complex plane (Figure 8).

Fig. 8.   Trajectories of two members j (=A) and k (=B) on the com-
plex plane in the special case when        , = 0.01(1 + ). = 0.02(1 + )

4.2 Triadic cases
 In this subsection, we discuss the dynamical scenarios of 
the linear system described by Eq. (8). In this case, the co-
efficient matrix which determines the dynamical scenarios 
of the solution curve of Eq. (8) is written as the matrix 

4.2 Triadic cases 

  
in Eq. (10). The eigenvalues of this matrix are rather com-
plicated. Of course, one of the three eigenvalues is always 1. 
In this case, the two eigenvalues except 1 determine the 
type of the dynamical scenario of this system. These two 
eigenvalues are written in the form,         , 
where D is a function of 

4.2 Triadic cases 

. We shall show some patterns 
of the dynamical scenario of this system below.

 Simulation 2, Case 1 (tripartite deadlock) is the case 
when the absolute values of two eigenvalues are greater 
than 1, and they are the same. In this case, the initial con-
figuration of members can be said to be in the tripartite 
deadlock from the viewpoint of HFM. Members diverge to 
infinity preserving the state of tripartite deadlock as time 
proceeds (Figure 9). The direction of rotation of the trajec-
tories in the plane is counterclockwise. If we change the co-
efficients 

4.2 Triadic cases 

 a bit, we have trajectories whose direction of 
rotation is clockwise.

Fig. 9.   Trajectories of two members j (=A), k (=B), and l(=C) on 
the complex plane in the special case when = = = = = = 0.01(1 + ).

 Simulation 2, Case 2 (tripartite deadlock) is the case 
when the absolute values of two eigenvalues are both 1, i.e., 
a double root, while the other eigenvalue is less than 1. In 
this case, although the initial configuration of members is 
in the tripartite deadlock, it dissolves in a dyadic relation, as 
time proceeds (Figure 10).

= 0.01(1 + ),

4.2 Triadic cases 

1 + ±
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Fig. 10.   Trajectories of two members j (=A), k (=B), and l(=C) 
on the complex plane in the special case when == = 0.01(1 ), = = = 0.02(1 ).

 Simulation 2, Case 3 (tripartite deadlock) is the case 
when the absolute values of two eigenvalues are both less 
than 1. In this case, the initial tripartite deadlock state 
breaks down gradually and three members converge to a 
fixed point as time proceeds (Figure 11).

Fig. 11.   Trajectories of two members j (=A), k (=B), and l(=C) 
on the complex plane in the special case when =0.01(1 ), = = 0.01(1 ), = =  =0.02(1 ).

 Simulation 2, Case 4 (tripartite deadlock) is the case 
when the absolute values of two eigenvalues are both less 
than 1, as with Case 3. In this case, 
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6. Discussion 

 instead of 
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 was set 
to 0.01(1 )
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. As a result, the initial tripartite deadlock 
state breaks down gradually and three members converge to 
a fixed point as time proceeds, as in Case 3, but solution 
curves of the three members are different from those of 
Case 3 (Figure 12).

Fig.   12. Trajectories of two members j (=A), k (=B), and l(=C) 
on the complex plane in the special case when =0.01(1 ), = 0.01(1 ), = 0.01(1 ), =  = = 0.02(1 ).

 Simulation 2, Case 5 (tripartite deadlock) is the case 
when the absolute values of three eigenvalues are all ones, 
i.e., a triple root. In this case, the initial tripartite deadlock 
state breaks down gradually and three members diverge to 
infinity as time proceeds (Figure 13). Although trajectories 
of these members look like straight lines at a glance, alge-
braic solutions by the Patzer algorithm teach us that these 
trajectories are quadratic curves.

Fig. 13.   Trajectories of two members j (=A), k (=B), and l(=C) 
on the complex plane in the special case when = 0.01(1 ), = 0.005(1 ), = 0.01(1 ), = 0.01(1 ), = 0.005(1 ), = 0.01(1 ).

5. Classification of the dynamical scenarios 
of the linear systems with control term

 In this section, we describe the dynamical scenario of a 
linear system with control term described by Eq. (5). In 
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general, such a system can be solved algebraically. For ex-
ample, if we add a control term,    , to Eq. (9) which is 
a linear dyadic case, we have
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 (16)

 Then, the solution curve can be written as

 

5. Classification of the dynamical scenarios of the linear systems with control term 

=  + ,

6. Discussion 

 (17)

where 
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 is the initial coordinate vector.
 In this case, we assume that the original dyadic linear 
system is the same as Simulation 1, Case2 discussed earlier, 
and          ,         . In contrast to its 
solution curves, the solution curves of the system with a 
control term is shown in Figure 14.

Fig. 14.   Trajectories of two members j (=A) and k (=B) on the 
complex plane in the special case when = 0.01(1 + ),, = 0.02(1 + ). In this case, a special control term 
is added to the original one.

6. Discussion

 In this paper we have proposed a recent version of a set 
of complex difference equation models, which describes 
changes in asymmetric relationships among objects over 
time. Typical examples of these objects may be citation fre-
quencies in scientific publications (i.e., Barabási & Albert, 
1999; Chino, 1978), amounts of trade among nations (i.e., 
Chino, 1978), and connections among neurons (i.e., Aizen-
berg et al., 1971, 2000; Hirose, 1992; Suksmono & Hirose, 
2005).
 If we use the matrix notation, the above data at an instant 
of time is represented by a real asymmetric relational data 
matrix whose elements denote the magnitudes of proximity 
from object to object. Instead, if we utilize the graph theory, 
it is represented by a weighted directed graph (or abbrevi-
ated as digraph).

 Let us now suppose that such an asymmetric relational 
data matrix (or a weighted digraph) is observed at an instant 
of time. Then, it is natural to ask the following questions. In 
what manner does the proximity among objects change the-
oretically as time proceeds, through the interactions among 
objects? How can we change the proximities among objects, 
or paraphrase it to say, how can we control these proximi-
ties?
 To answer these questions, we apply the Chino-Shiraiwa 
theorem (Chino & Shiraiwa, 1993) to the asymmetric rela-
tional data matrix (or weighted digraph) observed at an in-
stant of time, first. This theorem teaches us that objects 
which constitute the matrix are represented as points in a 
(complex) Hilbert space or in an indefinite metric space, de-
pending on the definiteness of the matrix. However, we 
may embed objects in a complex plane (i.e., one-dimension-
al Hilbert space) if the largest eigenvalue of the Hermitian 
matrix computed from the real asymmetric relational data 
matrix observed at an instant of time is sufficiently large.
 The difference equation model discussed in this paper 
considers these points embedded in the Hilbert space as ini-
tial points of the model and examines the possible theoreti-
cal scenarios of its trajectories utilizing the established the-
ories and methods of difference equation as well as those of 
the complex dynamical system. In this sense our job might 
be said to be an introduction to an elementary theory of dy-
namic weighted digraph. In this paper, we have reported the 
part one of our theory, in which we have described a current 
difference equation model and have shown the possible the-
oretical scenarios of its trajectories of some special linear 
difference equation models. In a companion paper to be 
published soon, we shall discuss the possible theoretical 
scenarios of some nonlinear difference equation models, as 
a second part of our theory.
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