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Review

Asymmetric Multidimensional Scaling
̶1. Introduction

Naohito CHINO*

    The history and scope of asymmetric multidimensional scaling (abbreviated as asymmetric MDS) are 
briefly discussed. First, the unidimensional sensory scaling in psychophysics is contrasted with the unidimen-
sional psychological scaling in psychometrics. Second, the law of comparative judgment and the law of categor-
ical judgment are introduced, which constitute the basis for asymmetric MDS. Third, several symmetric MDS’ s 
which are extensions of the unidimensional scalings and theorems which underpin the symmetric MDS are de-
scribed. Fourth, asymmetric MDS’s which are extensions of the symmetric MDS and a theorem which is a basis 
for asymmetric MDS are discussed.
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1  Introduction

As is frequently the case, psychological phenomena which 
we encounter in daily life are multidimensional in nature. 
For example, a famous intelligence test, WAIS, uses 11 
scales in order to diagnose adult intelligence. Similarly, 
EPPS consists of 15 scales which diagnose personality. In 
these tests, the number of dimensions is presupposed. It is 
also frequently the case that such a number is not known a 
priori.
	 Multidimensional scaling, which we shall hereafter ab-
breviate as MDS, is a method for locating stimuli which 
vary with respect to an unknown number of dimensions, in 
a certain dimensional psychological continuum, given a set 
of dissimilarities between stimuli. Here, stimuli may be 
physical objects, persons, groups, nations and so on. Of 
course, such a set of dissimilarities between stimuli can be 
stacked into a matrix form,  of order n, where n is the 
number of stimuli. We shall call the method symmetric 
MDS if  is symmetric, and asymmetric MDS if it is asym-
metric. Symmetric MDS is an extension of unidimensional 
scaling to be discussed below, and asymmetric MDS is an 
extension of symmetric MDS.
	 Asymmetric MDS has a long history. In fact, if we view 
sensory scalings in psychophysics (e.g., Fechner, 1860; 

Herrnstein & Boring, 1965; Stevens, 1951; Weber, 1834) as 
the origin of the unidimensional scaling, asymmetric MDS 
goes back to the 19th century. However, it may be natural 
and appropriate not to view sensory scalings as the root of 
asymmetric MDS, because it is usual that psychological 
scalings in psychometrics do not necessarily assume any 
correspondence between the scale values to be attached to 
stimuli and the physical quantities which belong to them.
	 In this sense, asymmetric MDS may be said to go back to 
the early 20th century, especially to the pioneering work of 
Thurstone (1927a). According to him :
	 … we have then two criteria, one for the stimuli and one 
for the discriminal processes of these stimuli. The stimulus 
continuum must of course be defined in terms of some defi-
nite stimulus attribute. The discriminal continuum is a qual-
itative one which does not necessarily have either magni-
tude or intensity (Thurstone, 1927a, p. 370).
	 His seminal work was a watershed of unidimenisional 
scalings, and it extended the applicability of scaling meth-
ods drastically, although one of the key terms in his work, 
discriminal process, which means psychological value to be 
attached to any object or person in general, sounds today 
somewhat strange.
	 In a companion paper (Thurstone, 1927b) he proposed 
the famous law of comparative judgment using the notion 
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of discriminal process, which plays a central role in his the-
ory. Let Xj and Xc be two stimuli on a discriminal continu-
um. According to this law, the probability that Xj > Xc (e.g., 
Xj is superior than Xc , or Xj is heavier than Xc , and so on) 
is expressed as
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psychological value to be attached to any objects or person in general, sounds somewhat strange.
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on a discriminal continuum. According to this law, the probability that Xj > Xc (e.g., Xj is superior

than Xc, or Xj is heavier than Xc, and so on) is expressed as

Pjc = Prob(Xj > Xc) =
1√
2πσjc

∫ ∞

0

exp

{
−1
2

(
y − µjc
σjc

)2
}
dy, (1)

where µjc is defined as the discriminal difference, µj − µc. Here, µj and µc are the psychological values

on a discriminal continuum corresponding to the two stimuli, and are respectively the mean values of the

two discriminal processes,

vj = µj + ϵj , ϵj ∼ N(0, σ2j ), (2)

vc = µc + ϵc, ϵc ∼ N(0, σ2c ). (3)

Here, σ2j and σ
2
c are variances of the discriminal processes, vj and vc, respectively. Moreover, σjc in Eq.

(1) is the standard deviation of the discriminal difference. Eq. (1) can be abbreviated as Pjc = Φ
(

µjc

σjc

)
.

Bock and Jones (1968) call it the response function.

Later, Torgerson (1954, 1958) extended the law of comparative judgment to the case of a rating scale

with a few ordered categories, and proposed the law of categorical judgment. According to this law, the

probability that Xj is judged to fall in less than or equal to the kth category is written as

Pjk = Prob(Xj ≤ τk) =
1√

2πσj−k

∫ 0

−∞
exp

{
−1
2

(
v − (µj − τk)

σj−k

)2
}
dv = Φ(Zjk), (4)

where τk is the boundary value of the kth category and k+1th category on the discriminal continuum,

and Zjk = (τk − µj)/σj−k. Here, σj−k is the standard deviation of the variable v in Eq. (4).

Ten years after Thurstone’s seminal work referred to above, two papers were published which underpin

the classical MDS to be published later. One is Young and Householder (1938) and the other Richardson

(1938). The former is concerned with the necessary and sufficient condition that the set of numbers djk

between stimuli constitutes the mutual distances of a real set of points in Euclidian space. According to

the Young-Householder theorem, this condition is that∆ is positive semi-definite (abbreviated hereafter as

p.s.d.). The latter is concerned with a model of symmetric MDS, which might be viewed as a ”preliminary

work” of Torgerson’s classical MDS, considering Torgerson’s citation (Torgerson, 1952) to Richardson’s

work. The reason that we view Richardson’s work as a preliminary one is that his work is merely a

summary of a 15 minutes presentation in an academic meeting and there exists no way of knowing the

details of his work at this point. It is Tucker and Messick (1963) that clearly point out that MDS was

developed by Richardson (1938), and extended by Torgerson (1952).
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nal continuum corresponding to the two stimuli, and are re-
spectively the mean values of the two discriminal processes,
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Here, ó 2 and ó 2 are variances of the discriminal processes, 
vj and vc , respectively. Moreover, ó j c in Eq. (1) is the 
standard deviation of the discriminal difference. Eq. (1) can 
be abbreviated as              . Bock and Jones (1968) 
call it the response function.
	 Later, Torgerson (1954, 1958) extended the law of com-
parative judgment to the case of a rating scale with a few 
ordered categories, and proposed the law of categorical 
judgment. According to this law, the probability that Xj is 
judged to fall in less than or equal to the kth category is 
written as
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where k is the boundary value of the kth category and 
k + 1th category on the discriminal continuum, and Zjk =  
( k − μj) /ó j –k . Here, ó j –k is the standard deviation of the 
variable v in Eq. (4).
	 Ten years after Thurstone’s seminal work, referred to 
above, two papers were published which underpin the clas-
sical MDS to be published later. One is Young and House-
holder (1938) and the other Richardson (1938). The former 
is concerned with the necessary and sufficient condition 
that the set of numbers djk between stimuli constitutes the 
mutual distances of a real set of points in Euclidian space. 
According to the Young-Householder theorem, this condi-
tion is that  is positive semi-definite (abbreviated hereafter 
as p.s.d.). The latter is concerned with a model of symmet-
ric MDS, which might be viewed as a “preliminary work” 

of Torgerson’s classical MDS, considering Torgerson’s cita-
tion (Torgerson, 1952) to Richardson’s work. The reason 
that we view Richardson’s work as a preliminary one is that 
his work is merely a summary of a 15-minute presentation 
in an academic meeting and there exists no way of knowing 
the details of his work at this point. It is Tucker and  
Messick (1963) that clearly point out that MDS was devel-
oped by Richardson (1938), and extended by Torgerson 
(1952).
	 Although Young and Householder’s theorem by itself 
does not describe the way of determining the number of di-
mensions of the space in which stimuli are embedded, 
Young and Householder (1938) refer to the paper which en-
ables us to fit a lower dimensional set of points to a given 
set. This is nothing but the work of Eckart and Young 
(1936), which is concerned with the method for obtaining 
an m × n matrix B of rank r that minimizes a Frobenius 
norm, || B − A ||F, given an m × n matrix A of rank k, and 
a nonnegative integer r < k (e.g., Lawson & Hanson, 1974). 
Since a solution to the problem can be obtained by utilizing 
the famous singular value decomposition (abbreviated as 
SVD) of A as in Lawson and Hanson, SVD plays an impor-
tant role in the theory of MDS.
	 Nowadays the MDS formulated fully by Torgerson is 
called the classical MDS, because Torgerson assumed that 
the dissimilarities in his MDS had to fulfill a distance prop-
erty in the Euclidian space, although he called it the com-
parative distance which did not necessarily satisfy the ratio 
scale level of measurement.
	 Kruskal (1964a, b) discarded the metric restriction of the 
classical MDS and extended MDS to the case in which the 
similarity is measured at an ordinal level. Therefore, his 
MDS is called the nonmetric MDS. It extended the applica-
bility of MDS to a certain extent. Guttman (1968) devel-
oped another algorithm for nonmetric MDS called the 
Smallest Space Analysis, abbreviated as SSA, and Lingoes 
(1973) provided a program series composed of several ver-
sions of SSA.
	 The applicability of MDS was further extended by sever-
al researchers who developed the so-called individual dif-
ferences MDS which enables us to examine differences in 
individuals in some senses. This method assumes in general 
that interstimulus distances are defined for each individual. 
Let such a set of data be 1, 2,  … , m, where m is the 
number of individuals.
	 For example, Tucker and Messick (1963) proposed a 
Points of View Analysis abbreviated as PVA. In the first 
stage of PVA, we first rearrange elements of each of the 
data matrices into a column vector of order n (n − 1) / 2. 
Next, we stack m vectors into an n (n − 1) / 2 × m matrix X, 
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the notion of discriminal process, which plays a central role in his theory. Let Xj and Xc be two stimuli

on a discriminal continuum. According to this law, the probability that Xj > Xc (e.g., Xj is superior

than Xc, or Xj is heavier than Xc, and so on) is expressed as

Pjc = Prob(Xj > Xc) =
1√
2πσjc

∫ ∞

0

exp

{
−1
2

(
y − µjc
σjc

)2
}
dy, (1)

where µjc is defined as the discriminal difference, µj − µc. Here, µj and µc are the psychological values

on a discriminal continuum corresponding to the two stimuli, and are respectively the mean values of the

two discriminal processes,

vj = µj + ϵj , ϵj ∼ N(0, σ2j ), (2)

vc = µc + ϵc, ϵc ∼ N(0, σ2c ). (3)

Here, σ2j and σ
2
c are variances of the discriminal processes, vj and vc, respectively. Moreover, σjc in Eq.

(1) is the standard deviation of the discriminal difference. Eq. (1) can be abbreviated as Pjc = Φ
(

µjc

σjc

)
.

Bock and Jones (1968) call it the response function.

Later, Torgerson (1954, 1958) extended the law of comparative judgment to the case of a rating scale

with a few ordered categories, and proposed the law of categorical judgment. According to this law, the

probability that Xj is judged to fall in less than or equal to the kth category is written as

Pjk = Prob(Xj ≤ τk) =
1√

2πσj−k

∫ 0

−∞
exp

{
−1
2

(
v − (µj − τk)

σj−k

)2
}
dv = Φ(Zjk), (4)

where τk is the boundary value of the kth category and k+1th category on the discriminal continuum,

and Zjk = (τk − µj)/σj−k. Here, σj−k is the standard deviation of the variable v in Eq. (4).

Ten years after Thurstone’s seminal work referred to above, two papers were published which underpin

the classical MDS to be published later. One is Young and Householder (1938) and the other Richardson

(1938). The former is concerned with the necessary and sufficient condition that the set of numbers djk

between stimuli constitutes the mutual distances of a real set of points in Euclidian space. According to

the Young-Householder theorem, this condition is that∆ is positive semi-definite (abbreviated hereafter as

p.s.d.). The latter is concerned with a model of symmetric MDS, which might be viewed as a ”preliminary

work” of Torgerson’s classical MDS, considering Torgerson’s citation (Torgerson, 1952) to Richardson’s

work. The reason that we view Richardson’s work as a preliminary one is that his work is merely a

summary of a 15 minutes presentation in an academic meeting and there exists no way of knowing the

details of his work at this point. It is Tucker and Messick (1963) that clearly point out that MDS was

developed by Richardson (1938), and extended by Torgerson (1952).

2
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decompose the inner product matrix X t X by the Young-
Householder theorems (i.e., including the Eckart-Young 
theorem), and obtain a best fit matrix X̂p of order p which 
is less than m. The best fit matrix is further rotated into a 
simple structure. Each of the column vectors of the rotated 
matrix Fp is viewed as a view point of the dissimilarity 
judgments. In the second stage we compute some sort of 
compromise matrices Ta, a = 1, 2, … , p in such a way that 
                    , where f ia is the (i, a) element of 
Fp. Finally we administer MDS to each of these com- 
promise matrices, and obtain p configurations of stimuli 
corresponding to the p view points, respectively.
	 Carroll and Chang (1970) developed another type of the 
individual differences MDS called INDSCAL, considering 
shortfalls of PVA. They assumed a weighted Euclidian dis-
tance model, i.e.,

	

Although Young and Householder’s theorem by itself does not describe the way of determining the

number of dimensions of the space in which stimuli are embedded, Young and Householder (1938) refer

to the paper which enables us to fit a lower dimensional set of points to a given set. This is nothing

but the work of Eckart and Young (1936), which is concerned with the method for obtaining an m × n

matrix B of rank r that minimizes a Frobenius norm, ∥B −A∥F , given an m × n matrix A of rank k,

and a nonnegative integer r < k (e.g., Lawson & Hanson, 1974). Since a solution to the problem can be

obtained by utilizing the famous singular value decomposition (abbreviated as SVD) of A as in Lawson

and Hanson, SVD plays an important role in the theory of MDS.

Nowadays the MDS formulated fully by Torgerson is called the classical MDS, because Torgerson

assumed that the dissimilarities in his MDS had to fulfill a distance property in the Euclidian space,

although he called it the comparative distance which did not necessarily satisfy the ratio scale level of

measurement.

Kruskal (1964a, b) discarded the metric restriction of the classical MDS and extended MDS in the case

in which the similarity is measured at an ordinal level. Therefore, his MDS is called the nonmetric MDS.

It extended the applicability of MDS to a certain extent. Guttman (1968) developed another algorithm

for nonmetric MDS called the smallest space analysis abbreviated as SSA, and Lingoes (1973) provided

a program series composed of several versions of SSA.

Applicability of MDS was further extended by several researchers who developed the so-called individ-

ual differences MDS which enables us to examine differences in individuals in some senses. This method

assumes in general that interstimulus distances are defined for each individual. Let such a set of data be

∆1, ∆2, · · ·, ∆m, where m is the number of individuals.

For example, Tucker and Messick (1963) proposed a Points of View Analysis abbreviated as PVA.

At the first stage of PVA, we first rearrange elements of each of the data matrices into a column vector

of order n(n − 1)/2. Next, we stack m vectors into an n(n − 1)/2 ×m matrix X, decompose the inner

product matrix XtX by the Young-Householder theorems (i.e., including the Eckart-Young theorem),

and obtain a best fit matrix X̂p of order p which is less than m. The best fit matrix is further rotated

into a simple structure. Each of the column vectors of the rotated matrix F p is viewed as a view point

of the dissimilarity judgments. At the second stage we compute some sort of compromise matrices

T a, a = 1, 2, · · · , p in such a way that T a =
1
m

∑m
i=1 fia∆i, where fia is the (i, a) element of F p.

Finally we administer MDS to each of these compromise matrices, and obtain p configurations of stimuli

corresponding to the p view points, respectively.

Carroll and Chang (1970) developed another type of the individual differences MDS called INDSCAL,

considering shortfalls of PVA. They assumed a weighted Euclidian distance model, i.e.,

dijk =

����
r∑

t=1

wit(xjt − xkt)2, i = 1, 2, · · · ,m, (5)

where wit denotes a weight corresponding to each individual i on each dimension t. It is apparent

3

� (5)

where wit denotes a weight corresponding to each individu-
al i on each dimension t. It is apparent that INDSCAL as-
sumes a stimulus space which is common to all individuals, 
and a subject space which represents individual differences 
in relative saliences or importances in the dimensions.
	 Escoufier and his colleagues (e.g., Escoufier, 1973; Lavit, 
C., Escoufier, Y., Sabatier, R., and Traissac, P., 1994) pro-
posed a third type individual differences MDS model called 
the Structuration des Tableaux A Trois Indices de la Statis-
tique (STATIS) (Structuralization of the three-way statistical 
table). STATIS consists of the three steps. Step 1 is called 
the inter-structure analysis, which uncovers a multidimen-
sional inter-structure among m occasions. Step 2 is called 
the intra-structure analysis, which discloses a holistic mul-
tidimensional intra-structure among n stimuli. Step 3 is 
called the trajectory analysis, which estimates the trajectory 
of each stimulus through occasions in the holistic intra-
structure (e.g., Grorud, Chino, & Yoshino, 1995).
	 Takane, Young, & de Leeuw (1977) proposed an Alter-
nating Least Squares algorithm for individual differences 
sCALing method called ALSCAL, which includes not only 
some individual differences MDS methods but also the 
classical MDS as well as various MDS methods developed 
by that time including nonmetric MDS. They compiled the 
fruits of years of study on symmetric MDS developed by 
that time into an algorithm.
	 Although symmetric MDS methods developed by the 
late 1970’s were merely descriptive, some psychometricians 
made inroads into the inferential symmetric MDS at that 
time. For example, Ramsay (1977, 1978, 1982) proposed a 

maximum likelihood (ML) MDS called MULTISCALE. It 
assumes that the observed dissimilarities ä j k r obey the log-
normal distribution, that is, ln ä j k r ~ N (ln djk , ó 2). Here, 
subscript r denotes the rth replication of dissimilarity judg-
ment on the pair of stimuli, (j, k). In general, unknown pa-
rameters such as coordinates of stimuli etc. in ML MDS are 
estimated so as to maximize the likelihood of the data under 
some specified distributional assumption.
	 Takane (1978a, b) developed a maximum likelihood (ML) 
method for nonmetric MDS for a set of empirical orderings 
on a set of pairs of stimuli, which he calls MAXSCAL-1, 
utilizing Thurstone’s law of comparative judgment. In his 
nonmetric ML MDS, coordinates of stimuli to be recovered 
are related to the distance dij between stimuli i and j by the 
Minkowski power metric, which is called the representation 
model. The dij is then assumed to error-perturbed to give 
rise to a psychological value ( t ) in two ways. One is the 
normal error, and the other the multiplicative error. He calls 
such a process the error model. Assume here that a new 
variable Yijk l equals 1 whenever i j is greater than k l, and 
otherwise 0. Then, Pr (Yijk l  =1) = Pr ( i j >  k l) which is an 
important assumption implied by the law of comparative 
judgment. For the normal error, Pr ( i j > k l) = Φ (hijk l), 
where hijk l = (dij − dkl) /ó i j k l. Likelihood of the data can 
thus be defined using the function Φ.
	 Takane (1981) developed another ML MDS called 
MAXSCAL-2 utilizing law of categorical judgment. As in 
MAXSCAL-1, this method assumes some representation 
models and error models. In addition, it presupposes re-
sponse models. That is, subjects place error-perturbed prox-
imities in one of the M rating scale categories C1, C2, … , 
CM. Therefore, the probability that the error-perturbed 
proximity of stimuli i and j, say, i j falls in cm is given by

	

falls in cm is given by the

pijm = pr(bm−1 < τij < bm). (6)

Utilizing the law of categorical judgment, one can then construct the likelihood of the data.

Takane & Carroll (1981) proposed a third ML MDS method in the case when dissimilarity measures

are taken by ranking procedures such as the method of conditional rank orders or the method of triadic

combinations. They call it MAXSCAL-4.

After Ramsay, Takane, and Carroll’s pioneering works, some other researchers have also proposed

different ML MDS methods (e.g., Groenen, 1993; Groenen, Mathar, & Heisser, 1995; MacKay, 1989).

Recently, Oh & Raftery (2001) criticized ML MDS’s and proposed a Bayesian MultiDimensional Scaling

abbreviated as Bayesian MDS (BMDS). Their major criticisms on the ML MDS are (1) justification of ML

relies on asymptotic theory, and the number of parameters to be optimized over typically grows as fast

as the number of objects, so that the asymptotic theory may not apply in high dimensions (Cox, 1982),

(2) the likelihood surface will tend to have many more local minima when there are more dimensions,

and finding a good initial estimate will be correspondingly more difficult.

In their BMDS a Euclidian distance model is used and a Gaussian measurement error is assumed in

the observed dissimilarity. Markov Chain Monte Carlo (MCMC) algorithm is used in order to obtain a

Bayesian solution of the stimuli configuration. According to them, their BMDS provided a much better

fit to the data than did the classical MDS and a moderately better fit than did ALSCAL in all the

examples they tested. A simple Bayesian criterion called MDSIC which is based on the Bayes factor or

ratio of integrated likelihood is used in order to choose an appropriate dimension.

All the symmetric MDS models discussed above assume that the dissimilarity data matrix ∆ is sym-

metric. For example, Kruskal (1964a) discusses nonsymmetry of dissimilarities in his seminal paper on

nonmetric MDS. He recommends to average δij and δji if they are measurements on the same underly-

ing quantity, and differ only because of statistical fluctuation. However, we shall frequently encounter

asymmetric relationships which might not be considered as statistical fluctuation in a daily life.

Asymmetric MDS goes back to the work of Young (1975). He proposed a weighted Euclidian model

dij =

����
r∑

a=1

wia(xia − xja)2, wia ≥ 0, (7)

in order to handle the problem of nonsymmetry of dissimilarities, and called it the ASYMSCAL model.

We shall call it simply as ASYMSCAL.

Various asymmetric MDS methods have been proposed by a body of researchers since then. However,

as in the case of ASYMSCAL by Young, most of them have merely been concerned with how to represent

asymmetric relationships between stimuli in a multidimensional continuum until recently. In other words,

most of them have merely discussed representation models.

For example, Gower and Constantine (Constantine & Gower, 1978; Gower, 1977) discuss several

possible methods for analyzing asymmetric data including SVD, canonical analysis of asymmetry, a
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Utilizing the law of categorical judgment, one can then 
construct the likelihood of the data.
	 Takane & Carroll (1981) proposed a third ML MDS 
method in the case when dissimilarity measures are taken 
by ranking procedures such as the method of conditional 
rank orders or the method of triadic combinations. They 
call it MAXSCAL-4.
	 After Ramsay, Takane, and Carroll’s pioneering works, 
some other researchers have also proposed different ML 
MDS methods (e.g., Groenen, 1993; Groenen, Mathar, & 
Heisser, 1995; MacKay, 1989). Recently, Oh & Raftery 
(2001) criticized ML MDS’s and proposed a Bayesian Mul-
tiDimensional Scaling abbreviated as Bayesian MDS 
(BMDS). Their major criticisms of the ML MDS are (1) 
justification of ML relies on asymptotic theory, and the 

Although Young and Householder’s theorem by itself does not describe the way of determining the

number of dimensions of the space in which stimuli are embedded, Young and Householder (1938) refer

to the paper which enables us to fit a lower dimensional set of points to a given set. This is nothing

but the work of Eckart and Young (1936), which is concerned with the method for obtaining an m × n

matrix B of rank r that minimizes a Frobenius norm, ∥B −A∥F , given an m × n matrix A of rank k,

and a nonnegative integer r < k (e.g., Lawson & Hanson, 1974). Since a solution to the problem can be

obtained by utilizing the famous singular value decomposition (abbreviated as SVD) of A as in Lawson

and Hanson, SVD plays an important role in the theory of MDS.

Nowadays the MDS formulated fully by Torgerson is called the classical MDS, because Torgerson

assumed that the dissimilarities in his MDS had to fulfill a distance property in the Euclidian space,

although he called it the comparative distance which did not necessarily satisfy the ratio scale level of

measurement.

Kruskal (1964a, b) discarded the metric restriction of the classical MDS and extended MDS in the case

in which the similarity is measured at an ordinal level. Therefore, his MDS is called the nonmetric MDS.

It extended the applicability of MDS to a certain extent. Guttman (1968) developed another algorithm

for nonmetric MDS called the smallest space analysis abbreviated as SSA, and Lingoes (1973) provided

a program series composed of several versions of SSA.

Applicability of MDS was further extended by several researchers who developed the so-called individ-

ual differences MDS which enables us to examine differences in individuals in some senses. This method

assumes in general that interstimulus distances are defined for each individual. Let such a set of data be

∆1, ∆2, · · ·, ∆m, where m is the number of individuals.

For example, Tucker and Messick (1963) proposed a Points of View Analysis abbreviated as PVA.

At the first stage of PVA, we first rearrange elements of each of the data matrices into a column vector

of order n(n − 1)/2. Next, we stack m vectors into an n(n − 1)/2 ×m matrix X, decompose the inner

product matrix XtX by the Young-Householder theorems (i.e., including the Eckart-Young theorem),

and obtain a best fit matrix X̂p of order p which is less than m. The best fit matrix is further rotated

into a simple structure. Each of the column vectors of the rotated matrix F p is viewed as a view point

of the dissimilarity judgments. At the second stage we compute some sort of compromise matrices

T a, a = 1, 2, · · · , p in such a way that T a =
1
m

∑m
i=1 fia∆i, where fia is the (i, a) element of F p.

Finally we administer MDS to each of these compromise matrices, and obtain p configurations of stimuli

corresponding to the p view points, respectively.

Carroll and Chang (1970) developed another type of the individual differences MDS called INDSCAL,

considering shortfalls of PVA. They assumed a weighted Euclidian distance model, i.e.,

dijk =

����
r∑

t=1

wit(xjt − xkt)2, i = 1, 2, · · · ,m, (5)

where wit denotes a weight corresponding to each individual i on each dimension t. It is apparent
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number of parameters to be optimized over typically grows 
as fast as the number of objects, so that the asymptotic the-
ory may not apply in high dimensions (Cox, 1982), (2) the 
likelihood surface will tend to have many more local mini-
ma when there are more dimensions, and finding a good ini-
tial estimate will be correspondingly more difficult.
	 In their BMDS a Euclidian distance model is used and a 
Gaussian measurement error is assumed in the observed 
dissimilarity. Markov Chain Monte Carlo (MCMC) algo-
rithm is used in order to obtain a Bayesian solution of the 
stimulus configuration. According to them, their BMDS 
provided a much better fit to the data than did the classical 
MDS and a moderately better fit than did ALSCAL in all 
the examples they tested. A simple Bayesian criterion called 
MDSIC which is based on the Bayes factor or ratio of inte-
grated likelihood is used in order to choose an appropriate 
dimension.
	 All the symmetric MDS models discussed above assume 
that the dissimilarity data matrix  is symmetric. For ex-
ample, Kruskal (1964a) discusses nonsymmetry of dissimi-
larities in his seminal paper on nonmetric MDS. He recom-
mends to average ä i j and ä j i if they are measurements on 
the same underlying quantity, and differ only because of 
statistical fluctuation. However, we shall frequently en-
counter asymmetric relationships which might not be con-
sidered as statistical fluctuation in daily life.
	 Asymmetric MDS goes back to the work of Young (1975). 
He proposed a weighted Euclidian model

	

falls in cm is given by the

pijm = pr(bm−1 < τij < bm). (6)

Utilizing the law of categorical judgment, one can then construct the likelihood of the data.

Takane & Carroll (1981) proposed a third ML MDS method in the case when dissimilarity measures

are taken by ranking procedures such as the method of conditional rank orders or the method of triadic

combinations. They call it MAXSCAL-4.

After Ramsay, Takane, and Carroll’s pioneering works, some other researchers have also proposed

different ML MDS methods (e.g., Groenen, 1993; Groenen, Mathar, & Heisser, 1995; MacKay, 1989).

Recently, Oh & Raftery (2001) criticized ML MDS’s and proposed a Bayesian MultiDimensional Scaling

abbreviated as Bayesian MDS (BMDS). Their major criticisms on the ML MDS are (1) justification of ML

relies on asymptotic theory, and the number of parameters to be optimized over typically grows as fast

as the number of objects, so that the asymptotic theory may not apply in high dimensions (Cox, 1982),

(2) the likelihood surface will tend to have many more local minima when there are more dimensions,

and finding a good initial estimate will be correspondingly more difficult.

In their BMDS a Euclidian distance model is used and a Gaussian measurement error is assumed in

the observed dissimilarity. Markov Chain Monte Carlo (MCMC) algorithm is used in order to obtain a

Bayesian solution of the stimuli configuration. According to them, their BMDS provided a much better

fit to the data than did the classical MDS and a moderately better fit than did ALSCAL in all the

examples they tested. A simple Bayesian criterion called MDSIC which is based on the Bayes factor or

ratio of integrated likelihood is used in order to choose an appropriate dimension.

All the symmetric MDS models discussed above assume that the dissimilarity data matrix ∆ is sym-

metric. For example, Kruskal (1964a) discusses nonsymmetry of dissimilarities in his seminal paper on

nonmetric MDS. He recommends to average δij and δji if they are measurements on the same underly-

ing quantity, and differ only because of statistical fluctuation. However, we shall frequently encounter

asymmetric relationships which might not be considered as statistical fluctuation in a daily life.

Asymmetric MDS goes back to the work of Young (1975). He proposed a weighted Euclidian model

dij =

����
r∑

a=1

wia(xia − xja)2, wia ≥ 0, (7)

in order to handle the problem of nonsymmetry of dissimilarities, and called it the ASYMSCAL model.

We shall call it simply as ASYMSCAL.

Various asymmetric MDS methods have been proposed by a body of researchers since then. However,

as in the case of ASYMSCAL by Young, most of them have merely been concerned with how to represent

asymmetric relationships between stimuli in a multidimensional continuum until recently. In other words,

most of them have merely discussed representation models.

For example, Gower and Constantine (Constantine & Gower, 1978; Gower, 1977) discuss several

possible methods for analyzing asymmetric data including SVD, canonical analysis of asymmetry, a
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in order to handle the problem of nonsymmetry of dissimi-
larities, and called it the ASYMSCAL model. We shall refer 
it simply as ASYMSCAL.
	 Various asymmetric MDS methods have been proposed 
by a body of researchers since then. However, as in the case 
of ASYMSCAL by Young, most of them until recently have 
merely been concerned with how to represent asymmetric 
relationships between stimuli in a multidimensional contin-
uum. In other words, most of them have merely discussed 
representation models.
	 For example, Gower and Constantine (Constantine & 
Gower, 1978; Gower, 1977) discuss several possible meth-
ods for analyzing asymmetric data including SVD, canoni-
cal analysis of asymmetry, a cyclone model, and so on. We 
shall hereafter abbreviate the canonical analysis of asym-
metry as CASK (e.g., Chino & Shiraiwa, 1993), although it 
is sometimes called the Gower diagram.
	 In CASK, the observed dissimilarity data matrix  is de-

composed into the symmetric part S s and the skew-sym-
metric part S sk first, that is,  = S s + S sk . Then, the latter 
part is decomposed by SVD to yield,

	

cyclone model, and so on. We shall hereafter abbreviate the canonical analysis of asymmetry as CASK

(e.g., Chino & Shiraiwa, 1993), although it is sometimes called the Gower diagram.

In CASK, the observed dissimilarity data matrix ∆ is decomposed into the symmetric part Ss and

the skew-symmetric part Ssk first, that is, ∆ = Ss + Ssk. Then, the latter part is decomposed by SVD

to yield,

Ssk =XΓKXt, (8)

where Γ is a diagonal matrix of order n such that Γ = diag(γ1, γ1, γ2, γ2, · · · , (0)), andX is an orthogonal

matrix of order n. Moreover, K is a special matrix of order n.

As Gower (1977) points out, the elements of Ssk do not form a metric, and therefore, any kind of

distance interpretation of such diagrams so drawn is unwarranted. To be more precise, CASK employs

the standard symplectic basis and therefore it is different from that of a Euclidian space, as Chino &

Shiraiwa (1993) point out.

By contrast, Chino (1977, 1978, 1990) proposed a similar method which is different in philosophy.

The generalized version (Chino, 1990) is called the Genenalized Inner Product multidimensional SCALing

abbreviated as GIPSCAL. The GIPSCAL model is expressed as follows:

∆ = aZZt + bZLqZ
t + c1n1

t
n, (9)

where Z is an n × q configuration matrix, and Lq is a special skew-symmetric matrix of order q. It

is apparent from eq. (9) that GIPSCAL represents the symmetric part and the asymmetric part (to be

precise, the skew-symmetric part) simultaneously in a configuration space.

Kiers & Takake (1994) simplified and generalized GIPSCAL in such a way that it fits the data better.

Trendafilov (2002) reformulated GIPSCAL as an initial value problem for certain first order matrix

ordinary differential equations, which results in a globally convergent algorithm for solving it.

Harshman (Harshman, 1978; Harshman et al., 1982) proposed a different and simple asymmetric

MDS model called the DEcomposition into DIrectional COMponents abbreviated as DEDICOM, which

is expressed as

∆ = Y AY t, (10)

where Y is a configuration matrix, andA is the DEDICOM ”core” matrix of order p giving the directional

relationship among the basic p types or dimensions.

It was Escoufier & Grorud (1980) that proposed a similar method to GIPSCAL, but with somewhat

curious formulation which they called the complex coding. They decompose the observed data matrix ∆

into the symmetric part and the skew symmetric part, and compile them as

H = Ss + iSsk, (11)

where i denotes the imaginary number. It is apparent that this complex matrix is a Hermitian matrix

of order n. They solved the eigenvalue problem of the matrix, utilizing a traditional method to obtain

6
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where Γ is a diagonal matrix of order n such that Γ = 
diag ( 1, 1, 2, 2, … , (0)), and X is an orthogonal matrix 
of order n. Moreover, K is a special matrix of order n.
	 As Gower (1977) points out, the elements of S sk do not 
form a metric, and therefore, any kind of distance interpre-
tation of such diagrams so drawn is unwarranted. To be 
more precise, CASK employs the standard symplectic basis 
and therefore it is different from that of a Euclidian space, 
as Chino & Shiraiwa (1993) point out.
	 By contrast, Chino (1977, 1978, 1990) proposed a similar 
method which is different in philosophy. The generalized 
version (Chino, 1990) is called the Genenalized Inner 
Product multidimensional SCALing abbreviated as GIP-
SCAL. The GIPSCAL model is expressed as follows:
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where Z is an n × q configuration matrix, and Lq is a special skew-symmetric matrix of order q. It

is apparent from eq. (9) that GIPSCAL represents the symmetric part and the asymmetric part (to be

precise, the skew-symmetric part) simultaneously in a configuration space.

Kiers & Takake (1994) simplified and generalized GIPSCAL in such a way that it fits the data better.

Trendafilov (2002) reformulated GIPSCAL as an initial value problem for certain first order matrix

ordinary differential equations, which results in a globally convergent algorithm for solving it.

Harshman (Harshman, 1978; Harshman et al., 1982) proposed a different and simple asymmetric

MDS model called the DEcomposition into DIrectional COMponents abbreviated as DEDICOM, which

is expressed as

∆ = Y AY t, (10)

where Y is a configuration matrix, andA is the DEDICOM ”core” matrix of order p giving the directional

relationship among the basic p types or dimensions.
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where i denotes the imaginary number. It is apparent that this complex matrix is a Hermitian matrix
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solved the eigenvalue problem of the matrix, utilizing a tra-
ditional method to obtain it’s eigenvalues and eigenvectors 
by computing a special kind of real symmetric matrix of or-
der 2n.
	 Using the first eigenvalue and the corresponding eigen-
vector, they approximate the symmetric part and the skew-
symmetric part of the data as follows:

	

it’s eigenvalues and eigenvectors by computing a special kind of real symmetric matrix of order 2n.

Using the first eigenvalue and the corresponding eigenvector, they approximate the symmetric part

and the skew-symmetric part of the data as follows:

sjk(s) ∼ λ1(uj1uk1 + vj1vk1), sjk(sk) ∼ λ1(vj1uk1 − uj1vk1), (12)

where (uj1, vj1) and (uk1, vk1) are, respectively, the coordinates of stimuli j and k in a real space.

By contrast, Chino & Shiraiwa (Chino, 1991a, b; Chino & Shiraiwa, 1993) proposed the same model

as that of Escoufier and Grorud independently, and called it the Hermitian Canonical Model abbreviated

as HCM. They applied the eigenvalue problem directly to the Hermitian matrix in Eq. (11), and obtained

the following equation:

∆ =XΩsX
t +XΩskX

t, (13)

where Ωs and Ωsk are special symmetric and skew-symmetric matrices, respectively.

At this point it is natural to ask whether the configuration of stimuli obtained by the complex coding

or HCM has a metric property or not. Chino & Shiraiwa (1993) attacked this problem, and found the

necessary and sufficient condition that the dissimilarity data is expressible in terms of a certain metric

space. To be precise, the necessary and sufficient condition that the set djk gives the mutual distances

of a real (true) set of points in a finite-dimensional (complex) Hilbert space is that H is p.s.d.. The

Chino-Shiraiwa theorem is clearly an extension of the Young-Householder theorem to the complex space.

In contrast with the models discussed above, some researchers have proposed augmented distance

models like Young’s ASMSCAL (e.g., Krumhansl, 1978; Okada & Imaizumi, 1987, 1997; Saito, 1991;

Saito & Takenda, 1990; Weeks & Bentler, 1982; Zielman & Heiser, 1996). In these models, the Okada

and Imaizumi models abbreviated as the OI models are unique in the sense that these handle the ordinal

asymmetric data based on Kruskal’s monotone regression. For example, the one-mode two-way version

of the OI models is expressed as

d∗jk = djk − rj + rk, (14)

where d∗jk is the augmented distance between stimuli j and k.

We shall briefly refer to some miscellaneous models Sato (1988), Ten Berge (1997), and Tobler (1976-

1977). Sato (1988) proposed an asymmetric MDS model of which distance function is asymmetric,

that is, the Minkowski metric function. It should be noticed that a well-known Minkowski’ r-metric

which is, for example, used in Kruskal’s nonmetric MDS, is a symmetric distance function. Ten Berge

(1997) considered the definition of asymmetry implied in Gower’s approach, which might be viewed as a

method of reducing asymmetry by rank-one matrices, and suggested a different method. Tobler (1976-

1977) proposed a unique method for analyzing the interaction between geographical areas, which is often

represented by ”from-to” tables.

It is interesting to note that the asymmetric MDS methods discussed above have remained to be

descriptive until quite recently. Although Chino (1992) proposed an ML asymmetric MDS which is
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where d * is the augmented distance between stimuli j and 
k.
	 We shall briefly refer to some miscellaneous models, 
Sato (1988), Ten Berge (1997), and Tobler (1976–1977). 
Sato (1988) proposed an asymmetric MDS model of which 

distance function is asymmetric, that is, the Minkowski met-
ric function. It should be noticed that the well-known 
Minkowski’ r-metric which is, for example, used in 
Kruskal’s nonmetric MDS, is a symmetric distance func-
tion. Ten Berge (1997) considered the definition of asym-
metry implied in Gower’s approach, which might be viewed 
as a method of reducing asymmetry by rank-one matrices, 
and suggested a different method. Tobler (1976–1977) pro-
posed a unique method for analyzing the interaction be-
tween geographical areas, which is often represented by 
“from-to” tables.
	 It is interesting to note that the asymmetric MDS meth-
ods discussed above have remained to be descriptive until 
quite recently. Although Chino (1992) proposed an ML 
asymmetric MDS which is a natural extension of MAXS-
CAL by Takane (1981), it has yet remained to be completed. 
Saburi and Chino (2008) developed it further, and called it 
ASYMMAXSCAL. In ASYMMAXSCAL, three submodels, 
i.e., the representation model, the error model, and the re-
sponse model are assumed as in MAXSCAL. Any asym-
metric MDS models developed up to now can be basically 
chosen as representation models in ASMMAXSCAL, they 
picked up the OI model in their paper. In order to compare 
the goodness of fit of the several models, ASYMMAXS-
CAL utilizes AIC.
	 Another outstanding feature of ASYMMAXSCAL is that 
it enables us to check whether the data is sufficiently asym-
metric. As in symmetric MDS’s, asymmetry had been pre-
supposed without examination in applying any asymmetric 
MDS to data. By contrast, ASYMMAXSCAL compares 
any asymmetric MDS model with a saturated model under 
the symmetry hypothesis and so on using AIC. However, 
such comparisons merely serve as indirect examinations of 
asymmetry. Moreover, information criteria such as AIC do 
not generally consider the nature as well as features of the 
data. To overcome this difficulty, ASYMMAXSCAL exam-
ines the features of the data by utilizing the traditional test 
for symmetry and related tests such as the test for quasisym-
metry (Caussinus, 1965), and so on (Chino, 2008; Chino & 
Saburi, 2006, 2008).
	 For example, Chino and Saburi (2006) proposed to ad-
minister a sequential test for the quasi-symmetry hypothe-
sis, the marginal homogeneity hypothesis, the quasi-inde-
pendent hypothesis, the independent hypothesis, and some 
of the log-linear hypothesis, prior to analyze asymmetric 
relational data. However, some questions arise in testing 
these hypotheses concerning (1) how to arrange the order of 
testing these symmetry related hypotheses, (2) whether we 
can control the error of the first kind (and possibly, that of 
the second kind) (Chino, 2008).
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	 Recently, Chino, Tomizawa, & Saburi (Chino & Saburi, 
2009, 2010; Tomizawa, 2010, personal communication) 
have almost proven that the three likelihood ratio statistics 
pertaining to symmetry, i.e., those for testing the quasi-
symmetry hypothesis, a symmetry hypothesis, and a mar-
ginal homogeneity hypothesis are mutually independent 
stochastically. This result enables us to control at least the 
error of the first kind in some sequential test for the sym-
metry and related hypothesis. In proving the above problem, 
theorems due to Hogg & Craig (1956) and Lehmann (1983) 
are utilized.
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