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1 Introduction

There has been a body of work on asymmetric MDS since Young

(1975) proposed the ASYMSCAL (see for example, Chino, 1997;

Cox & Cox, 2001). However, there are a number of problems yet

to be solved on this and other related topics. In this paper we shall

raise six such problems.

2 Technical problems to be solved

Problem 1: Asymmetric ML-MDS

There has been much formal literature on (symmetric) maxi-

mum likelihood MDS (ML-MDS) (Ramsay, 1969, 1977, 1978, 1982;

Suppes & Zinnes, 1963; Takane, 1978a, 1978b, 1981; Takane &

Carroll, 1981). However, there has been no published paper on

asymmetric maximum likelihood MDS (asymmetric ML-MDS), al-

though Chino (1992) has already proposed an algorithm which is

a simple extension of Takane’s algorithm (Takane, 1981) to asym-

metric data.

In Chino (1992), the representation model is assumed to be

gjk =
n∑

t=1
λt(rjtrkt + cjtckt) +

n∑
t=1

λt(rktcjt − rjtckt) + ac, (1)

and is further assumed that the gjk is error-perturbed by some

psychological process in such a manner that

τijkl = gjk + eijk, (2)
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where τijkl is a psychological value (or discriminal process) for

subject i corresponding to the proximity from object j to object

k at replication l. As the error models, he assumes the normal

distribution model and the Beta distribution of the first kind

model.

Asymmetric ML-MDS enables not only the estimation of the

confidence regions of coordinates of objects but also tests of di-

mensionality hypotheses as is often done in symmetric ML-MDS.

As will be introduced briefly in a later section, these confidence

regions might be utilized if we intend to predict means and vari-

ances of coordinates of objects using the Kalman filter, given a

set of longitudinal asymmetric proximity matrices (Chino, 2003b).

Problem 2: Nonmetric MDS’s for various asym-

metric MDS models

Although there is a body of literature on asymmetric MDS, non-

metric MDS algorithms for these MDS models have been restricted

to the Okada-Imaizumi models (Okada & Imaizumi, 1987, 1997).

It may be necessary and appropriate to develop nonmetric MDS

algorithms to be applicable to the other asymmetric MDS models.

Such versions might enable us to choose among these asymmetric

MDS models based on the badness of fit indices such as Kruscal’s

STRESS formulae. Furthermore, if we develop the Takane-type

asymmetric ML-MDS discussed in Problem 1 which includes non-

metric, asymmetric ML-MDS, we might be able to select the best

model based on some test statistic or a certain information cri-

terion.
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Problem 3: Various asymmetric MDS approaches

to contingency tables

A closely related approach to asymmetric MDS is the analysis

of contingency tables (for example, Agresti, 2002; Bishop, Fien-

berg, & Holland, 1975). Recently, Rooij and Heiser (De Rooij,

2003; De Rooij & Heiser, 2003) have proposed a series of dis-

tance models specifically designed for the quasi-symmetry model.

Their approach may be contrasted with the mere applications of ex-

tant descriptive asymmetric MDS methods to square contingency

tables. For example, Rooij and Heiser (2003) approximates ob-

served frequencies not with direct distance models but with ex-

pected frequencies. As is well known, linear models concerning

the expected frequencies are standard and rational approaches to

frequency data. Similar approaches may be taken to non-distance

models for the asymmetric MDS.

Problem 4: Dynamic asymmetric MDS

There has been an increasing attention to the analysis of longitu-

dinal asymmetric relational data matrices (for example, Ambrosi &

Hansohm, 1987; Chino & Nakagawa, 1983, 1990; Grorud, Chino,

& Yoshino, 1995; Okada & Imaizumi, 1997). In these models,

features of location changes of objects which underlie proximity

changes among objects over time are conjectured a posteriori, ex-

aming the results of analysis, as pointed out by Chino (2003b).

Recently, Imaizumi (2003) has proposed a vector model in which

transition frequencies are assumed to be certain functions of the

distance between states. By contrast, Chino has proposed an ax-

iomatic approach to a set of longitudinal asymmetric proximity

matrices, in which some complex difference system models are

assumed (Chino, 2000, 2002, 2003a, 2003b). In this approach, we
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suppose that in pairwise relations the following three axioms hold

true;
� �
1. Asymmetric proximities between members force them to

change their proximities.

2. If one has a positive sentiment to the other, then

one will move toward the other in a sociopsychological

space.

3. If one has a negative sentiment to the other, then one

will move away from the other in the space.
� �
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Figure 1: Motion of two members when the positive direction of the lth complex plane is
assumed to be clockwise.

Especially, in Chino (2003b) three types of dynamic MDS mod-

els are proposed as candidates for these longitudinal data matri-

ces. All of these models assume that the theoretical space in which

members of a group interact with each other is either a Hilbert

space or an indefinite metric space.

One is a simple LS method in which measurement errors are

assumed for observed proximities, and deterministic latent pro-

cesses are also assumed.
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� �
1. measurement equation

sjkt = s̃jkt + εjkt, (3)

where

s̃jkt =
p∑

d=1
λ(d)s

(d)
jkt + γ, (4)

s
(d)
jkt = (ρ

(d)
jt ρ

(d)
kt + σ

(d)
jt σ

(d)
kt ) − (ρ

(d)
jt σ

(d)
kt + σ

(d)
jt ρ

(d)
kt ),

and εjkt’s are mutually independent.

2. latent deterministic process equation

zj,t+1 = zjt +
N∑

k �=j
Djk,t (zkt − zjt),

or in scalar form,

ρ
(d)
j,t+1 = ρ

(d)
jt +

N∑
v �=j

α
(d)
t (ρ

(d)
jt σ

(d)
vt −σ

(d)
jt ρ

(d)
vt )(ρ

(d)
vt −ρ

(d)
jt ), (5)

σ
(d)
j,t+1 = σ

(d)
jt +

N∑
v �=j

α
(d)
t (ρ

(d)
jt σ

(d)
vt −σ

(d)
jt ρ

(d)
vt )(σ

(d)
vt −σ

(d)
jt ), (6)

where α
(d)
t ≥ 0.

� �
Another is a nonlinear regression model with serially corre-

lated error terms (Gallant, 1987). Let us now consider the model

in which errors in the measurement equation discussed above are

assumed to be serially correlated. In this case it is convenient to

stack the longitudinal asymmetric matrices into a T by N 2 matrix
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Y as follows:

Y =




(
vec St

1

)t

(
vec St

2

)t

...(
vec St

T

)t




=




s111, s121, · · · , sNN1

s112, s122, · · · , sNN2

. . . . . . . . . . . . . . . . . . . . . . .

s11T , s12T , · · · , sNNT




. (7)

Furthermore, let us define

yjk =




sjk1

sjk2
...

sjkT




, εjk =




εjk1

εjk2
...

εjkT




.

Let us first consider a univariate nonlinear regression ap-

proach. The simple linear model can be rewritten as

yjk = f jk(θ) + εjk, (8)

where θ is the parameter vector of the model. Here we assume

that the errors (εjkt, t = 1, 2, . . . , T ) are serially correlated. If

the process {εjkt}∞t=−∞ is covariance stationary, we can estimate

the autocovariance matrix ΓT of the disturbance vector εjk, given

a sufficient number of sample points. Let it be Γ̂T . Suppose then

that Γ̂
−1

T can be factored as P̂
t
P̂ . Then we can estimate param-

eter vector θ via a usual LS method by replacing yjk and f jk(θ)

by P̂ yjk and P̂ f jk(θ), respectively (for example, Gallant, 1987).

In the case of multivariate nonlinear regression, we must esti-

mate covariance matrix ΣN2 of N 2 error terms ε11t, ε12t, . . . , εNNt.

In any case, this model requires the estimations of the autoco-

variance matrix ΓT as well as the covariance matrix ΣN2 or ΣN

based on data. Such requirements seem to be very tough to meet

from a practical point of view.
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The third is a nonlinear state space model in which an ob-

servation equation and a state equation are assumed. In the first

model, we can examine the qualitative features of the locomotions

of objects by utilizing dynamical system theories in mathematics.

In this model we shall assume two kinds of errors in both the

measurement equation and the latent equation. As a result, such

a set of equations can be said to be a nonlinear state space model.

In such a case the former equation and the latter equation can be

called the observation equation and the state equation, respec-

tively (Durbin & Koopman, 2001):
� �
1. the observation equation

yt = X t(θt) + εt, εt ∼ N(0, H t), (9)

2. the state equation

θt+1 = T t(θt) + ηt, ηt ∼ N(0, Qt), (10)
� �
for t = 1, 2, . . . , T , where θ1 ∼ N(a1, P 1), and X t(θt) and

T t(θt) are differentiable nonlinear functions of θt. Moreover, vec-

tor yt is defined as follows:

yt = (s11t, s12t, . . . , s1Nt, . . . , sNNt)
t (11)

According to Durbin and Koopman (2001), after linearizing the

X t(θt) and T t(θt) at a trial value θ̃t, we may apply the standard

Kalman filter to the above equations with an appropriate change

of notation.

The major purpose of this model is to forecast the means and

variances of coordinates of objects at time t+1 based on those

at time t utilizing the Kalman filter(Durbin & Koopman, 2001).
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3 Theoretical problems to be solved

Problem 5: Distribution of the Hermitian matrix

in HFM

In the complex coding proposed by Escoufier and Grorud (1980)

as well as the Hermitian Form Model (HFM) proposed by Chino

and Shiraiwa (1993), observed proximity matrix S of order N,

which equals the number of objects, is transformed first into a

Hermitian matrix such that H = Ss + i Ssk, where Ss = (S +

St)/2 and Ssk = (S − St)/2.

Although Chino and Shiraiwa examined the existence of the

complex metric structures embedded in this Hermitian matrix,

they have not considered the distribution of the latent roots of

the matrix. If we can write down their distribution, we may test

the dimensionality hypothesis based on data. Fortunately, we have

had various results on the distribution of complex normal vari-

ates since Wooding (1956), which might throw light on the study

under consideration. There seem to have recently been some pa-

pers which are directly concerned with this problem. These are

1. Camarda, Hs. (1992). Statistical behavior of eigenvalues

of real-symmetrical and complex Hermitian band matrices -

Comparison with random-matrix theory. Physical Review A,

45, 579-582.

2. Feinberg, J.; Zee A. (1997). Non-hermitian random matrix

theory: method of hermitian reduction. Nuclear Physics B,

504, 579-608.

3. Sugiura, N. (1973). Derivatives of the characteristic root of

a symmetric or a Hermitian matrix with two applications in
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multivariate analysis. Communications in Statistics, 1, 393-

417.

Problem 6: Qualitative features of complex differ-

ence systems

If the latent process of the complex difference system models

are assumed to be deterministic, then we can examine the quali-

tative features of the systems using dynamical system theories in

mathematics, especially a multivariate complex dynamical system

theory.

We are now interested in examining the mathematical features of

the following complex nonlinear difference system models (Chino,

2000, 2002, 2003a, 2003b):

zj,n+1 = zj,n +
r∑

m=1

N∑
k �=j

D
(m)
jk,n f (m)(zk,n−zj,n), j = 1, 2, · · · , N,

(12)

where,

f (m)(zk,n − zj,n) =




(z
(1)
k,n − z

(1)
j,n)

m

(z
(2)
k,n − z

(2)
j,n)

m

...

(z
(p)
k,n − z

(p)
j,n)

m




. (13)

Moreover, D
(m)
jk,n = diag

{
w

(1,m)
jk,n , · · · , w(p,m)

jk,n

}
, and

w
(l,m)
jk,n = a(l,m)

n r
(l,m)
j,n r

(l,m)
k,n sin (θ

(l,m)
k,n − θ

(l,m)
j,n ), (14)

where l = 1, 2, · · · , p, m = 1, 2, · · · , r.

The complex dynamical system theory is still an active area of

research since the innovative works by Cayley, Fatou, and Julia (for

example, Peitgen & Richter, 1986; Uno et al., 2003). The following

is a list of references which seem to be useful in examining the
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qualitative features of the behaviors of real or complex nonlinear

difference systems:

1. Carleson, L., and Gamelin, T. W. (1993). Complex Dynam-

ics. New York: Springer.

2. Chan K-S., and Tong, H. (2001). Chaos: A Statistical Per-

spective. New York: Springer.

3. Elaydi, S. N. (1999). An Introduction to Difference Equa-

tions. New York: Springer.

4. Peitgen, H.-O., and Richter, P. H. (1986). The Beauty of

Fractals. New York: Springer.

5. Sullivan, D. (1985). Quasiconformal homeomorphisms and dy-

namics I: Solution of the Fatou-Julia problem on wandering

domains. Annals of Mathematics, 122, 401-418.

6. Sullivan, D. (1985). Quasiconformal homeomorphisms and dy-

namics II: Structural stability implies hyperbolicity for Kleinian

groups. Acta mathematica, 155, 243-260.

7. Ueda, T., Taniguchi, M., Morosawa, S. (1995). Fukuso Riki-

gakukei Josetsu [Introduction to Complex Dynamical System].

Tokyo: Baifu-kan.
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