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1 Introduction 

 This is the fifth consecutive report of Chino’s (2018a).  In the first 

report we proposed an elementary theory of a dynamic weighted digraph 

(hereafter abbreviated as DWD) which describes changes in a weighted digraph 

over time.   

As is well known, the weighted digraph is a digraph with weights specified at any time, say, 

n, in which weights are attached to each directed arc (or edge, link) between nodes (or 

vertices, terminals) as well as each loop of the digraph.   

 

Fig. 1. A weighted digraph associated with the observed trade data of four nations at time n. 

 

Table 1. A trade data among four nations associated with a weighted digraph shown above. 

from/to 1.Japan 2.USA 3.China 4.Russia 

1.Japan 43,480    1,382    1,200      55 

2.USA     736 189,592    1,161      71 

3.China    1,764    4,832 119,684     348 

4.Russia     173     164     333   13,755 
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We denote the weight matrix at time n as 𝑊𝑛 = {𝑤𝑗𝑘,𝑛},   𝑗 = 1, ⋯ , 𝑁,   𝑘 = 1, ⋯ , 𝑁, 𝑛 =

1, ⋯ , 𝑇, where N is the number of nodes, and T is the number of times.  

 

Dynamic weighted digraph considers changes in a weighted digraph in Fig. 1 

over time.  This is equivalent to consider changes in an asymmetric similarity 

data over time in Table 1. 

 

In DWD we assume that there exists (1) an underlying space of states in 

which nodes of the observed weighted digraph are embedded, and (2) the 

configuration of nodes which varies according to the asymmetric interactions 

among nodes, which constitute a constant asymmetric interaction matrix (AIM). 

Here, the underlying space of states in DWD is a finite-dimensional Hilbert 

space which is obtained by applying the Chino and Shiraiwa theorem (Chino 

& Shiraiwa, 1993) to the observed asymmetric weight matrix at an initial point 

in time if the Hermitian matrix associated with this matrix is positive 

semi-definite (i.e., p.s.d.).   

 

Why can we embed nodes of an observed weighted digraph in a 

Hilbert space?  The answer is obtained by considering the eigenvalue 

problem of the following Hermitian matrix constructed from the 

observed asymmetric weighted matrix, i.e., asymmetric similarity 

matrix shown above: 

 

   Table 2. The Hermitian matrix associated with the (log transformed) ASM in 

Table 1. 

from/to 1.Japan 2.USA 3.China 4.Russia 

1.Japan 10.6801 6.9163 + 0.3150i 7.2827－0.1926i 4.5803－0.5730i 

2.USA 6.9163－0.3150i 12.1526 7.7700－0.7130i 4.6813－0.4186i 

3.China 7.2827－0.1926i 7.7700 + 0.7130i 11.6926 5.8302 + 0.0220i 

4.Russia 4.5803 + 0.5730i 4.6813 + 0.4186i 5.8302－0.0220i 9.5292 

 

Here, it is interesting to compare the Young-Householder theorem 

on symmetric similarity matrix (Young & Householder, 1938) with the 

Chino-Shiraiwa theorem on asymmetric similarity matrix.   

Since the latter theorem is lengthy and includes its proof in the original paper 
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(Chino & Shiraiwa, 1993), we have deleted the proof in the abbreviated theorem: 

Theorem (Young and Householder).  A necessary and sufficient 

condition for a set of numbers 𝑑𝑗𝑘 = 𝑑𝑘𝑗 to be the mutual distances of 

a real set of points in Euclidean space is that the matrix 𝑩 = {𝑏𝑗𝑘}, 

𝑏𝑗𝑘 =
1

2
(𝑑𝑗0

2 + 𝑑𝑘0
2 − 𝑑𝑗𝑘

2 ),                  (a.1) 

be positive semi-definite; and in this case the set of points is unique 

apart from a Euclidean transformation.  Here, 0 in Equation (a.1) 

denotes the origin. 

 

Remark.  The 𝑏𝑖𝑗 in Equation (a.1) in the Young-Householder theorem is the 

inner product of two vectors in an Euclidean space, and is deduced from the 

famous law of cosines. 

 

Theorem (Chino and Shiraiwa).  A necessary and sufficient condition 

for a set of numbers 𝑑𝑗𝑘 = 𝑑𝑘𝑗 to be the mutual distances of a real set 

of points in a finite-dimensional Hilbert space is that the matrix 𝑯 =

{ℎ𝑗𝑘}, 

     ℎ𝑗𝑘 =
1

2
(𝑑𝑗𝑜

2 + 𝑑𝑘𝑜
2 − 𝑑𝑗𝑘

2 ) +
1

2
𝑖 (𝑑𝑗𝑜

2 + 𝑑𝑘𝑜
2 − �̅�𝑗𝑘

2 ),     1 ≤ 𝑗, 𝑘 ≤ 𝑁.   (a.2) 

be positive semi-definite; and in this case the set of points is unique 

apart from an arbitrary unitary transformation.  Here,  

                                               𝑑𝑗𝑘 = ‖𝒗𝑗 − 𝒗𝑘‖,     1 ≤ 𝑗 ≤ 𝑁,             (a.3) 

                                              𝑑𝑗𝑜 = ‖𝒗𝑗‖,     1 ≤ 𝑗 ≤ 𝑁,                  (a.4) 

                                             �̅�𝑗𝑘 = ‖𝒗𝑗 − 𝑖 𝒗𝑘‖,     1 ≤ 𝑗, 𝑘 ≤ 𝑁.           (a.5) 
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and 𝒗𝑗  (1 ≤ 𝑗 ≤ 𝑁) be a vector of order n in a complex vector space. 

 

  First, let us define 

𝑯 = {ℎ𝑗𝑘} = 𝑨𝑠 + 𝑖𝑨𝑠𝑘,                        (a.6) 

where 𝑨 = {𝑎𝑗𝑘} = 𝑨𝑠 + 𝑨𝑠𝑘, 𝑨𝑠 = {(𝑎𝑗𝑘 + 𝑎𝑘𝑗) 2⁄ }, and 𝑨𝑠𝑘 = {(𝑎𝑗𝑘 − 𝑎𝑘𝑗) 2⁄ }.   

  Second, let us solve the eigenvalue problem of H and approximate it using the 

nonzero eigenvalues of H and the corresponding eigenvectors as 𝑯 = 𝑼1𝜦𝑼1
∗ .  

Then, 𝒗𝑗  (1 ≤ 𝑗 ≤ 𝑁) in the above theorem corresponds to a row vector of order n 

of 𝑼1  

Equation (a.2) in the Chino-Shiraiwa theorem is a version of the 

so-called polarization identity (or polar identity) which holds in a 

pre-Hilbert space.  The 𝒉𝒋𝒌  in Equation (a.2) is an inner product 

between two points in a complex space.  

 

 Here, a complex vector space with an inner product is called an inner product 

space or a pre-Hilbert space or a unitary space.  Therefore, it is apparent that 

𝒉𝒋𝒌  is a generalization of an inner product 𝒃𝒋𝒌  in a Euclidean space to a 

pre-Hilbert space.  It is known that a complete inner product space is called a 

Hilbert space. 

 

In DWD, we describe the changes in N nodes over time by a 

following general set of complex difference equations:  

 

𝑧𝑗,𝑛+1 = 𝑧𝑗,𝑛 + ∑ ∑ 𝐷𝑗𝑘
(𝑚)

𝑁

𝑘≠𝑗

𝑞

𝑚=1

𝑓(𝑚)(𝑧𝑗,𝑛 − 𝑧𝑘,𝑛) + 𝑔(𝑢𝑗,𝑛) + 𝑧0, 

𝑗 = 1,2, … , 𝑁,    (1) 

where 

 𝑓(𝑚)(𝑧𝑗,𝑛 − 𝑧𝑘,𝑛) = ((𝑧𝑗,𝑛
(1)

− 𝑧𝑘,𝑛
(1)

)
𝑚

, (𝑧𝑗,𝑛
(2)

− 𝑧𝑘,𝑛
(2)

)
𝑚

, … , (𝑧𝑗,𝑛
(𝑝)

− 𝑧𝑘,𝑛
(1𝑝)

)
𝑚

)
𝑡

,  

                                                             (2) 

and 

                𝐷𝑗𝑘
(𝑚)

= 𝑑𝑖𝑎𝑔 (𝛼𝑗𝑘
(1,𝑚)

, 𝛼𝑗𝑘
(2,𝑚)

, … , 𝛼𝑗𝑘
(𝑝,𝑚)

).            (3) 
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Here, m denotes the degree of the vector function 𝑓(𝑚)(𝑧𝑗,𝑛 − 𝑧𝑘,𝑛), which is assumed to 

have the maximum value q.  Moreover, 𝜶𝒋𝒌
(𝟏,𝒎)

, 𝜶𝒋𝒌
(𝟐,𝒎)

, … , 𝜶𝒋𝒌
(𝒑,𝒎)

 are complex constants. 

In the second report (Chino, 2019), we discussed the relation 

between the theory of DWD and that of evolutionarily stable strategy 

(abbreviated as ESS) in biology proposed by Maynard and Price 

(1973).   

In order to compare these two models, we first assumed a special case of DWD 

when p=1, m=1, and N=3.  Letting 𝒛𝑛 = (𝑧𝑗𝑛, 𝑧𝑘𝑛, 𝑧𝑙𝑛)
𝑡
, Eq. (1) can be written as  

 

  𝒛𝑛+1 = 𝑨3𝒛𝑛,   𝑨3 = (

1 + 𝑎𝑗𝑘 + 𝑎𝑗𝑙 −𝑎𝑗𝑘 −𝑎𝑗𝑙

−𝑎𝑘𝑗 1 + 𝑎𝑘𝑙 + 𝑎𝑘𝑗 −𝑎𝑘𝑙

−𝑎𝑙𝑗 −𝑎𝑙𝑘 1 + 𝑎𝑙𝑗 + 𝑎𝑙𝑘

),  

(4) 

 

where all the elements of this matrix are generally complex numbers.  If the 

initial configuration of nodes is a tripartite deadlock, then the solution curves 

diverge or converge depending on the eigenvalues of 𝑨3.   

 

For example, if 𝑎𝑗𝑘 = −0.01(1 − 𝑖) , 𝑎𝑗𝑙 = 0.01(1 − 𝑖) , 𝑎𝑘𝑗 =

−0.02(1 − 𝑖), 𝑎𝑘𝑙 = 0.02(1 − 𝑖), 𝑎𝑙𝑗 = −0.02(1 − 𝑖), and 𝑎𝑙𝑘 = 0.02(1 −

𝑖), we have solution curves shown in Fig. a.1. 
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   Fig. a.1.  Solution curves of Equation (4) with a special case of 𝑨𝟑 (This 

figure was reproduced from Fig.11 in Chino (2018). 

 

It is apparent from Fig. a.1 that as time proceeds the state of the tripartite 

deadlock disappears and the solution curves of the triad converge to a point. 

 

It should be noted here that our general DWD described by Eqs. (1), 

(2), and (3) enables us to describe various chaotic motions of nodes 

even if the space of states is one (complex) dimensional, and the 

number of nodes is two, as shown in the next figure (e.g., Chino, 

2018b). 
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Figure a.2.  Simultaneous plot of the trajectories of two nodes after 50,000 iterations. 

 

Next, we introduced a general two-population model proposed by Hofbauer 

(1996), that is 

         (
�̇�𝑖

�̇̇�𝑗
) = (

𝑥𝑖  ((𝑨𝒚)𝑖 − 𝒙𝑡𝑨𝒚

𝑦𝑗  ((𝑩𝒙)𝑗 − 𝒚𝑡𝑩𝒙
),   i= 1, … , n,  j=  1, … , m.     (5) 

 

where 𝑥 = (𝑥1, … , 𝑥𝑛 )𝑡  is the relative frequency vector for one population, while 𝑦 =

(𝑦1, … , 𝑦𝑚 )𝑡 is that for the second population.  Moreover, A is the payoff matrix for one 

population, while B is the payoff matrix for the second population.   

Second, we referred to an application of his model to the problem of learning 

to play with the game of rock-paper-scissors, which was investigated by Sato et 

al. (2002).  The payoff matrices of this game are written in general as 
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          A = (

𝜀𝑥 −1 1
1 𝜀𝑥 −1

−1 1 𝜀𝑥

),         B = (

𝜀𝑦 −1 1

1 𝜀𝑦 −1

−1 1 𝜀𝑦

),         (6) 

 

where −1 < 𝜀𝑥 < 1 and −1 < 𝜀𝑦 < 1.  Here, columns of these matrices are placed in the 

order of “rock”, “paper”, and “scissors”.  These are examples of ASMs which are 

hypothetical. 

 

If 𝜀𝑥 = −𝜀𝑦 = 𝜀, this game is called a zero sum game.  They found 

various interesting orbital patterns of system (6) which include those patterns 

close to chaotic orbits, in examining its solution curves when the parameter 

value 𝜀 varies. 

 

In the third report (Chino, 2020), we first pointed out an advantage of 

DWD over a simple application of asymmetric MDS to an observed ASM.   

 

As is apparent from our DWD formulation discussed above, we distinguish clearly between 

the observed ASM among objects (stated another way, nodes, elements, and so on) and the 

hypothetical AIM among objects.  This distinction relieves us of the problem of errors in 

estimating the configuration of objects, given an observed ASM among objects.  Second, we 

argued the differences between our DWD and some of the artificial neural network models.  

For example, the goal of the associative learning is to determine the weights values for a set 

of m scalar-valued inputs 𝒙 = [𝑥1, … , 𝑥𝑚]𝑡 which may be assumed to represent firing 

frequencies in presynaptic fibers through m synaptic junctions with coupling strengths 𝒘 =

[𝑤1, … , 𝑤𝑚]𝑡 (e.g., Oja, 1982).  For example, in the Hebbian rule the coupling strength 

vector 𝑤𝑛 at trial n is renewed as 𝒘𝑛+1 = 𝒘𝑛 + 𝜂𝒙𝑛𝑦(𝒙𝑛), while in Oja’s rule as 𝒘𝑛+1 =

𝒘𝑛 + 𝜂𝑦𝑛(𝒙𝑛 − 𝑦𝑛𝒘𝑛) .  In any case, the coupling strength vector in these models is 

assumed to change, and the Oja flow, for example, converges finally to a fixed point as 

learning proceeds.   

 

Second, we took up a method for the complex-valued multistate Hopfield 

associative memory proposed by Müezzinoğlu et al. (2003).   

 

In that method, it is assumed that the network consists of N fully connected neurons, whose 

states at time instant n constitute the state vector 𝒛[𝑛] of the network.  Moreover, let 𝑤𝑖𝑗 
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denote the complex-valued weight associated to the coupling from the state of the jth neuron 

to an input of the ith one.  Here, the state of a single neuron, say, lth neuron, at time 

n is updated according to the following recurrence equation: 

 

𝑧𝑙[𝑛 + 1] = 𝑐𝑠𝑖𝑔𝑛𝐾(𝑒𝑖(𝜋/𝐾) ∑ 𝑤𝑙𝑗𝑧𝑗[𝑛]𝑁
𝑗 ), 𝑙 = 1, ⋯ , 𝑚,      (6) 

 

while keeping all other states unchanged.  Here,  𝑐𝑠𝑖𝑔𝑛𝑘(𝑢)  is defined as 𝑒0  if 0 ≦

𝑎𝑟𝑔(𝑢) <
2𝜋

𝐾
,  𝑒𝑖2𝜋/𝐾  if 

2𝜋

𝐾
≦ 𝑎𝑟𝑔(𝑢) <

4𝜋

𝐾
,  …, and  𝑒𝑖[2𝜋/𝐾]/(𝐾−1)  if (𝐾 − 1)

2𝜋

𝐾
≦

𝑎𝑟𝑔(𝑢) < 2𝜋 , where K is the resolution factor of the network, and it determines the 

cardinality of the finite state space, while m is the order of the state vector z. 

 

Here, 𝑒0, 𝑒1, … , 𝑒𝐾−1 are the primitive Kth power root of a unit, and K points 

on the unit circle in the complex plane, and K points on the unit circle in the complex 

plane (Aizenberg & Aizenberg, 1992; Jancowski et al., 1996; Noest, 1988).  In this model, 

iterations are continued until the following computational energy function 

reaches a minimum: 

                       𝐸(𝒛) = −
1

2
𝒛𝐻𝑾𝒛.                       (7) 

A sufficient condition on the convergence of the recursion (6) has been reported in Jancowski 

et al. (1996) as a Hermitian weight matrix (𝑾 = 𝑾𝐻) with nonnegative diagonal entries. 

 

  In the fourth report (Chino, 2021), we pointed out that our method for embedding an 

observed or hypothetical weight matrix to a Hilbert space is clearly an extension of the 

spectral graph theory which has been extensively studied in various disciplines of science 

(e.g., Chung, 1997; Brouwer & Haemers, 2012).   

 

  In this report, we shall discuss the difference in model between DWD and traditional 

dynamical system models for asymmetric interactions among objects or nodes. 

 

2 Difference between DWD and dynamical system models for asymmetric interactions 

 

  As regards the dynamical system models for asymmetric interactions, a 

variety of systems of difference and differential equations have been proposed.  

Some of them are based on the established laws which govern the phenomena in 

each of the discipline of science, while others are not.   
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For example, in electrical circuit there exist a few laws such as the Ohm’s law 

and Faraday’s law which govern the current and voltage in the circuit.   

As a result, the system of differential equations which describes the changes in the state of 

the circuit over time is determined uniquely as a two-dimensional system whose state 

variables are the current through the inductor and the voltage across the capacitor branch 

(Hirsch & Smale, 1974). 

 

One is the generalized Ohm’s law, 

                         𝑓(𝑖𝑅) = 𝑣𝑅,                         (a.7) 

which describes the functional relationship between the current 𝑖𝑅 through the 

resister 𝑣𝑅.  Another is the Faraday’s law, 

                         𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑣𝐿(𝑡),                      (a.8) 

which describes the change in the current 𝑖𝐿 through the inductor over time.  

The other is the condition imposed on the capacitor C, 

                         𝐶
𝑑𝑣𝐶(𝑡)

𝑑𝑡
= 𝑖𝐶(𝑡),                      (a.9) 

which describes the change in the voltage at the capacitor over time.  Finally, 

these five equations can be simplified, considering the relations 

between them, as 

                                              (
𝑑𝑥 𝑑𝑡⁄

𝑑𝑦 𝑑𝑡⁄
) = (

𝑦 − 𝑓(𝑥)
−𝑥

),                  (a.10) 

where 𝑥 = 𝑖𝐿 and 𝑦 = 𝑣𝐶.  Hersch and Smale (op. cit., p.214) discuss 

the derivation of (a.9) in some detail. 

 

  Another example is a chemical reaction network.  This network is basically 

governed by the law of mass action, and the fundamental form of the system of 

differential equations which describes the change in the concentrations of the 

chemical species over time is written as a system of polynomial differential 

equations. 

  However, in most of the networks mainly observed in social and behavioral sciences, it is 

rare that such strict laws have been established.  Therefore, in such cases it will be necessary 
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and appropriate to consider general system models which possibly explain various 

phenomena.  In this sense, DWD may be said to meet this requirement.   

  Finally, most of the extant dynamical system models for asymmetric 

interactions assume implicitly or explicitly that the state space is a Euclidean 

space, while DWD assumes that it is a Hilbert space or indefinite metric space, 

depending on the definiteness of the Hermitian matrix constructed uniquely 

from an observed ASM.   

It should be noticed here that a Hilbert space includes a Euclidean space as a 

special case.  We shall discuss in more detail at the conference. 
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