ooodbotodoodboodbtogoooogoogn
O DSAI O O

gogd
goooobbogogd

20060 100 2801



10 ot vs. g

z(n+1)=1—pz’*(n), xc(-1,1), pec(0,2). (1.8)
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O 1.1: An orbit of the logistic map in the case when p=0.5
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O 1.2: A 2-cycles of the logistic map in the case when p=0.9
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O 1.4: Near the boundary of chaos of the logistic map in the case when p=1.401155
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O 1.5: An orbit of the logistic map in the case when p=2.0
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O 1.6: A bifurcation diagram of the logistic map
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0 1.7: A self-similar structure of the logistic map in 1.74 < y < 1.80
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O 1.8: An orbit of the simulated system at time = —3
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O 1.9: An orbit of the simulated system at time = —2
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O 1.10: An orbit of the simulated system at time = —1
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O 1.11: An orbit of the simulated system at time = 0
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O 1.12: An orbit of the simulated system at time = 1
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O 1.13: An orbit of the simulated system at time = 2
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O 1.14: An orbit of the simulated system at time = 3
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O 1.15: An orbit of the simplest Julia set with the initial value, zg = 0.5 + 0.67

O 1.16: An orbit of the simplest Julia set with the initial value, zo = cos(w/21) + i sin(m/21)
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O 1.17: A Mandelbrot process with ¢ = —0.12 4 0.74i

O 1.18: An orbit of the Mandelbrot process shown in Figure 7 with the initial value, zp = —0.2738 +
0.4783i
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0 2.1: The simplest differential equations with initial values
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0 2.2: The vector field and some solution curves near a saddle with Ay < 0 < A
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0 2.3: The vector field and some solution curves near a saddle with Ao < 0 < Ay
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0O 2.4: The vector field and some solution curves near an inward node with \; < Ay < 0
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O 2.5: The vector field and some solution curves near an inward node with Ay < A1 <0

0 2.6: The vector field and some solution curves near an outward node with 0 < A1 < Ag
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O 2.7: The vector field and some solution curves near an outward node with 0 < Ay < Ay

0 2.8: The vector field and some solution curves near an inward focus with A1 = A\a <0
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O 2.9: The vector field and some solution curves near an outward focus with A\; = Xy >0
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O 2.10: The vector field and some solution curves near an inward improper node with egs.(3.21),A < 0
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O 2.11: The vector field and some solution curves near an inward improper node with egs.(3.18),A < 0
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0 2.12: The vector field and some solution curves near an outward improper node with egs.(3.21),A > 0
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O 2.13: The vector field and some solution curves near an outward improper node with egs.(3.18),A > 0

0 2.14: The vector field and some solution curves near a (counterclockwise) spiral sink
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O 2.15: The vector field and some solution curves near a (clockwise) spiral sink
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0 2.16: The vector field and some solution curves near a (counterclockwise) spiral source
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O 2.17: The vector field and some solution curves near a (clockwise) spiral source

0 2.18: The vector field and some solution curves near a (counterclockwise) center
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0 2.19: The vector field and some solution curves near a (clockwise) center
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0 2.20: An w-limit cycle
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O 2.21: A spiral sink before an w-limit cycle appears
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O 2.22: An orbit of a spiral sink with a=0.55 and b=0.7
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0 2.23: An orbit of a spiral source with a=-1.0 and b=0.8

0O 2.24: The Mandelbrot set
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